UPDATES FROM PROJECT INTEGRICITY:
FIRST STEPS TOWARDS LINKING SEMANTIC 3D CITY MODELLING AND MULTI-DOMAIN CO-SIMULATION FOR ENERGY MODELLING AT URBAN SCALE

Edmund Widl, Giorgio Agugiaro, Pablo Puerto

Delft, 7 December 2018
License

This presentation is licensed under the Creative Commons License CC BY-NC-SA 3.0. According to CC BY-NC-SA 3.0 permission is granted to share this document, i.e. copy and redistribute the material in any medium or format, and to adapt it, i.e. remix, transform, and build upon the material under the following conditions:

- **Attribution:** You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- **NonCommercial:** You may not use the material for commercial purposes.
- **ShareAlike:** If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- **No additional restrictions:** You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Outline

• A few words about project IntegrCiTy
• Semantic 3D city models
• Multi-domain co-simulation
• Linking the two worlds
• Conclusions
Project IntegrCiTy

Decision-support environment for planning and integrating multi-energy networks and low-carbon resources in cities

Framework: JPI Urban Europe, ENSCC Call

Duration: 2016-2019

Members:
• 17 partners in Switzerland, Austria, Sweden
• 3 cities: Stockholm (S), Vevey (CH), Geneva (CH)

Homepage: http://iese.heig-vd.ch/projets/integrcity
Project IntegrCiTy

Energy networks in cities are still planned, built, operated and optimized in silo-like fashion.

Interoperability and synergies among existing and future energy infrastructures, through integrated modelling and multi-network simulation.
Project IntegrCiTy

Outline

Semantic 3D city models
Multi-domain co-simulation
Linking the two worlds
Conclusions and outlook

Image: http://iese.heig-vd.ch/projets/integrcity

- District heating network
- Electrical network
Outline

Semantic 3D city models
Multi-domain co-simulation
Linking the two worlds
Conclusions and outlook

Sim. tool A (Power Pl.)
Sim. tool B (Building)
Sim. tool C (Geoth. HP)
Sim. tool D (Power Pl.)
Sim. tool E (DH netw.)
Sim. tool F (PV)
Sim. tool G1 (Wind turb.)
Sim. tool G2 (Wind turb.)
Sim. tool G3 (Wind turb.)
Sim. tool H (El. netw.)
Sim. tool I (Power Pl.)
Sim. tool J (Building)
Outline

Semantic 3D city models

Multi-domain co-simulation

Linking the two worlds

Conclusions and outlook
Outline

Semantic 3D city models

Multi-domain co-simulation

Linking the two worlds

Conclusions and outlook
Extending CityGML: ADEs

- **Energy ADE**
 - Defines standardised entities needed for building energy simulation and data management purposes at city scale

- **Utility Network ADE**
 - Defines standardised entities needed for utility networks (district heating, gas, power grid, etc.)

- **Scenario ADE**
 - https://en.wiki.utilitynetworks.sig3d.org/images/upload/20171207_Agugiaro_Scenario_ADE_0.2.pdf

Schüler, N., Agugiaro, G., Cajot, S., Marechal, F., 2018
Linking interactive optimisation for urban planning with semantic 3D city models.
Extending the 3D City Database

Outline

Semantic 3D city models
Multi-domain co-simulation
Linking the two worlds
Conclusions and outlook

https://github.com/gioagu
Connecting the simulation tools

Sim. tool A (Power Pl.)
Sim. tool B (Building)
Sim. tool C (Geoth. HP)
Sim. tool D (Power Pl.)
Sim. tool E (DH netw.)
Sim. tool F (PV)
Sim. tool G1 (Wind turb.)
Sim. tool G2 (Wind turb.)
Sim. tool G3 (Wind turb.)
Sim. tool H (El. netw.)
Sim. tool I (Power Pl.)
Sim. tool J (Building)

O(n^2) complexity
Today: simulation of energy sub-systems

• Many different **energy-related domains**
 – generation, distribution, storage, HVAC, thermal networks, power electronics, controls, etc.

• Many different **expert tools**
 – lots of *dedicated simulators* available for each domain
 – includes massive amount of expert *experience*

• Domains are **typically treated separately**
 – focus on *components*, not systems
 – *simplifying* models
 – *incompatible* tools
“Tomorrow”: Co-simulation of multi-domain energy systems

- Biggest advantage is **modularity**
 - use *best available tool* for modeling and simulation of sub-system
 - modelers of different domains can *continue* using their *own tools*

- Two **main challenges**
 - *interfacing* of models/applications
 - data access, start/resume/stop execution of model, etc.
 - *orchestration* of simulation components during runtime
 - synchronization of models/applications, data flow, parallelization, etc.

From $O(n^2)$ down to $O(n)$ complexity!
Example of co-simulation setup

Outline

Semantic 3D city models
Multi-domain co-simulation
Linking the two worlds
Conclusions and outlook

Simulation (linked to a Scenario)

Simulator A
Simulator B
Simulator C

Output Port
Input Port

Port-Connection

(Co-)Simulation graph
How to link the two worlds?

Outline

- Semantic 3D city models
- Multi-domain co-simulation
- Linking the two worlds
- Conclusions and outlook

City-wide data

3DCityDB “plus”

Co-simulation topology and initialisation parameters

Technical simulations

Specific simul. tools

Co-simulation environment
Outline

Semantic 3D city models
Multi-domain co-simulation
Linking the two worlds
Conclusions and outlook

This is the link to CityGML CityObject(s)!!
Implementation

• **Simulation Package**
 – Data model implemented for 3DCityDB (for PostgreSQL)
 – Database schema + set of stored procedures
 – Application-independent implementation!

• For IntegrCiTy: **OBNL** (OBvious Node Link co-simulator)
 – Light-weight co-simulation orchestrator (dev. @ HES-SO)
 – Open-source, Python package, works also with Docker

 – **Mapping** between OBNL and the Simulation Package
 – Additional **data access layer** (using SQLAlchemy) to facilitate the link between OBNL and the extended 3DCityDB
Widl, E., Agugiaro, G., Puerto, P., 2018,
First steps towards linking semantic 3D city modelling and multi-domain co-simulation for urban energy modelling at urban scale.
Proposed workflow

Outline

Semantic 3D city models

Multi-domain co-simulation

Linking the two worlds

Conclusions and outlook

Initialisation

- retrieve initial conditions, model parameters, time series, etc.
- select or generate individual simulation models
- define co-simulation graph (nodes, links, etc.) and schedule

(Co-)Simulation

- run simulation
- no interaction with CityGML database needed (no storage of intermediate results)

Data post-processing

- retrieve selected simulation results

(Extended)

3DCityDB

- semantic representation of data
- store / retrieve scenarios

- store data (incl. semantic relations)
- use a format that is usable for visualization
Conclusions and outlook

• Initial work to bridge the gap between “GIS” and “technical-simulations” worlds

• **Simulation Package** models and stores meta-information for simulation or co-simulation
 – For simulation tools: configuration, initialization parameters, etc.
 – For co-simulation: additional information for coupling and orchestration

• Currently implemented in project **IntegrCiTy**, but...

• ...developed tools are **generic and flexible** enough to be used also in other contexts
 – *Intentional* open development: test and give (constructive) feedback!
Thank you for your attention

Edmund Widl
edmund.widl@ait.ac.at
Center for Energy
AIT – Austrian Institute of Technology, Austria

Giorgio Agugiaro
g.agugiaro@tudelft.nl
3D Geoinformation Group
TU Delft, The Netherlands
(previously @ AIT)

Pablo Puerto
pablo.puerto@crem.ch
CREM – Centre de Recherches Energetiques et Municipales, Switzerland
HES-SO – University of Applied Sciences of Western Switzerland, Switzerland
IMT Mines Albi / UMR CNRS 5302, Albi, France